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1/N corrections in Calogero-type models using the 
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Abstract. The collective field is applied to treat higher-order terms in the 1/  N expansion 
of the ground-state energy in the Calogero model and related O ( N ) ,  U ( N )  and S p ( N )  
invariant matrix models. All these models share the common structure in the large-N limit 
and have a unified description In terms of collective fields. 

1. Introduction 

The Calogero model (Calogero 1969) is one of the few exactly solvable one-dimensional 
quantum mechanical models of N-particle systems (Perelomov 1980). On the other 
hand, this model is related to O( N ) ,  U( N )  and Sp( N )  invariant matrix models which 
have been investigated in the past few years in connection with the large-N expansion 
of simplified models of quantum chromodynamics (Jevicki and Sakita 1980). There 
were also attempts to treat the Sp( N )  invariant model using the large-N method with 
collective fields (de Carvallo and Fateev 1981). It was shown that the treatment of 
the Sp( N )  model needs a careful analysis because of the specific singular interaction 
of the Calogero type (AndriC and Jevicki 1983). 

In the present paper we study the Calogero model and develop the collective-field 
method to treat higher-order corrections in the 11 N expansion. Knowing the wavefunc- 
tional in the leading order determines the next-to-leading term in energy. We obtain 
the following results. Firstly, we show that the Calogero-type model for an N-particle 
system possesses semiclassical behaviour in the large-N limit. Secondly, the corrections 
to the leading behaviour in N can be expressed in terms of collective fields and their 
correlations. 

2. Calogero interaction and related one-matrix models 

We start from the N-particle Hamiltonian with the Calogero interaction 

Because of the singularity of the Hamiltonian for x, = xJ, the wavefunction ought to 
have a prefactor which will vanish for x, = x,. We shall extract this prefactor in the form 

(2)  
N 

$ ( X I ,  . . . ,  X N ) = ~  (X, -XJ)*@(X1, .  . . , X , ) G A ( X , - X , ) @ ( X ,  , . . . ,  XN). 
‘<I  
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Using the identity 

and choosing A a0 such that A ( A  - 1) = g, we obtain 

l l N d  - A h ” A -  
2 A2‘ I = I  ax, ax, 8 

(3) 

Owing to the permutational symmetry of the Hamiltonian, we expect that the ground 
state will also keep this symmetry. We must therefore introduce a collective field which 
has permutation symmetry: 

N 

p ( x ) =  1 6(x-x i ) .  
r = l  

(4) 

Using the standard procedure, we obtain the Hermitian collective-field Hamiltonian 
(AndriC and Jevicki 1983) 

with 

W ( X )  = ( A  - l)d;p(x) +2Aa, 

The last term in the Hamiltonian is divergent and, as will be shown later, it is a 
counter-term. 

Let us show that the same kinematic part of the Hamiltonian arises in the singlet 
sector of the one-matrix model defined by the Lagrangian (Brezin et a1 1978) 

2 ’ = ~ T r & f 2 - T r  V ( M )  ( 7 )  
where M is the N x N matrix. We shall consider three cases: (i) the M = R real 
symmetric matrix, (ii) the M = H complex Hermitian matrix and (iii) the M = Q 
quaternionic Hermitian self-dual matrix. The corresponding global symmetry of the 
Lagrangian is O( N ) ,  U( N )  and Sp( N ) ,  respectively. 

We reformulate the matrix model ( 7 )  in terms of the collective field. Let us first 
formulate the corresponding Hamiltonian for real symmetric matrices R. There are 
f( N 2 +  N )  independent elements R ,  (we choose i sj). The kinetic part of the Hamil- 
tonian is then proportional to the O( N )  invariant Laplace-Beltrami operator in the 
space of matrices 

and the total Hamiltonian is 
H = - -  ;AR +Tr V ( R ) .  
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Let us express the Laplace-Beltrami operator operating on the singlet sector in 
terms of the collective field 

N 

p ( x ) = T r 6 ( x - R ) =  S(x-x,)  
, = I  

where xi are eigenvalues of R. Using the chain rule for derivatives, we obtain 

where we have used the notation w(x, R )  = -ARp(x) and 

In analogy with the procedure for case (iii) (AndriC and Jevicki 1983), we can express 
w and R in terms of ~ ( x ) .  All three cases can be condensed into one expression which 
turns out to be the same as the kinetic part in ( 5 )  with R as in ( 6 ) .  The O(N), W(N) 
and Sp( N )  invariant models are obtained for A = 0, 1, 2 ,  respectively. 

3. 1/N corrections 

For the ground-state wavefunctional we take the Gaussian ansatz (Cornwall et a1 1974) 

Here we have introduced two functions which we shall determine using the variational 
approach-the ground-state density po(x) and the density correlations G (  x, y ) .  

The ground-state energy is given by 

and from ( 8 )  

In addition to these relations we must impose 
the N-particle sector. From ( loa)  we obtain 

dx ~ O ( X )  = N I 
and from ( l o b )  we obtain 

dx  G(x, y )  = 0. 
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dx dy dxpo(x)po(y)+- dxp,(x)a,a,G-'(x, y )  +-I 2 X - Y  4 'I A ( A  - 1) 

The energy functional (9) expressed in terms of po(x) and G is 

,=X 

-4  2 J 

5 dx du du G(u, u)po(x)a, 
8 

+"'J 8 J dx d y p ( x ) ( x - y ~ p ( y )  (12) 

where P / x  means the principal value integral. Minimising the energy functional with 
respect to po(x) and G(x, y ) ,  we obtain two coupled non-linear equations: 

-I J ~ O ( ~ ) ~ x ~ - ' ( x , a ) ~ x G - ' ( x , b ) d x  8 
T ' A  A(A-1) 1 +- S(a - b ) p , ( a ) + T  - 

2 ( a  - b)' 

+w J dxpo(x)d,(---)a,( S ( X - U )  -) S ( x - b )  +$(a - b)'= p2 
8 PO(X) PO(X) 

(126) 
where p l  and p2 are Lagrange multipliers which ensure the conditions ( l l a )  and 
(11 b), respectively. From these two equations we should determine po(x) and G-'(x, y)  
subjected to the constraints (1 1 a )  and (1 1 b). In order to eliminate the singular terms 
in equations (12), we shall assume the ansatz 

where K is a singularity-free part of G-'(x, y). This ansatz will automatically eliminate 
the divergences (in the leading order in N )  which also appear in the energy functional 
(12). Using (12a) and (12b), one can write the ground-state energy as 
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Inserting (13) in (12a) and (126),  we can reduce the problem of finding po(x) to a 
simpler problem. If po(x) satisfies the equation 

and 

K ( X, y ) = [ x2 + y 2  - ~ X Y ]  
4 

then it is the solution of the system (12a) and (126). To prove this, we need to square 
equation (15a). Using the identity for the principal distributions (Jackiw and Stromin- 
ger 1981) 

P P  P P  P P  
x - y  x - 2  y - z  y - x  z - x  z - y  
-- +-- +--- - 7r26(x -y)6(x  - z )  

we obtain equation (12a). 
From equation (15a) we can discuss the qualitative features of the solution in terms 

of the parameter A. For A in the range 0 < A < 1 and large x, the first term is vanishing 
and therefore po(x) is vanishing like Gaussian. For x = 0, po(x) has a maximum. For 
A =0,  the solution is a Gaussian function and for A = 1 ,  we have a solution defined 
on the compact support. For both these cases, the solution po(x) can be found explicitly. 

The ground-state energy, together with the leading corrections from (14), is given 
by 

In this particular case when po(x) satisfies equation (15a),  we can evaluate the integrals 
in (16) by using equation (15a) and we obtain 

E = f m [ A N ( N  - I ) +  N - 13. 

This is the expression for the leading order in N and its next correction in the large- N 
expansion. This is also, not unexpectedly, the exact result for finite N. We can show 
this by using scaling arguments (Andrid et a1 1983) owing to the scaling properties of 
the potential. 

Now we can also determine the Schrodinger wavefunctional of N particles 
expressed in terms of the collective field, G-’ and K :  

cL(P) = A  exp(-t In J ( P ) ) @ b ) .  (18 )  
The first factor is an antisymmetric prefactor, the second factor is due to the Hermitisa- 
tion of the Hamiltonian and the third factor is a collective vacuum wavefunctional. 
The Jacobian is determined by using the standard procedure when going from explicit 
coordinate dependence to the Hermitian collective-field treatment. The explicit struc- 
ture of the Jacobian is given by 

l n J = ( A - l )  p ( x ) l n p ( x ) d x + A  dxdyp(x) ln lx-y lp(y) .  I I 
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Expanding the wavefunctional around the stationary point po( x )  up  to quadratic 
fluctuations and using equation ( 15a), we obtain the wavefunctional 

This is also an  exact result in the case with finite N (Calogero 1969). If we substitute 
equation (4) for finite N, we obtain the exact wavefunction for N particles. 

Summarising, we can point out the role of the parameter A .  For A =0,  we have a 
symmetric wavefunction and  the corresponding ground-state energy is identical with 
the ground-state energy of N bosons. For A = 1, the wavefunction is completely 
antisymmetric and the corresponding ground-state energy is exactly that of the system 
of N fermions with the harmonic-potential interaction (Levy-Leblond 1969). Here we 
have unified the treatment of one-dimensional bosons and fermions via the singular 
interaction which represents continuous perturbations to the Hamiltonian. In this 
context, the role of the parameter is to determine statistics. For A # 0, 1, it represents 
intermediate statistics. 

For the Sp( N )  invariant matrix model ( A  = 2 )  with the interaction 

w 2  w 2  

2 2 1 = 1  
Tr V(M)=-TrM2=-  1 xf (20) 

the ground-state energy, together with the corrections, can be obtained from (17) 
because the two-particle harmonic interaction is equivalent to the interaction (20) up  
to the centre-of-mass motion and rescaling. Then equation (17) becomes 

w w 
E =- [ A N (  N - 1) + NI =- ( 2 N 2  - N )  

2 2 

which is the exact result for finite N because there are 2 N 2 -  N independent variables 
describing quaternionic matrices. 

4. Conclusion 

We have developed a consistent straightforward way of treating higher terms in the 
1/ N expansion using the collective-field treatment. In the examples given above, we 
have also obtained exact results for finite N. In the collective-field formulation, we 
have shown an  explicit equivalence between the singlet sector of the O( N ) ,  U( N )  and 
Sp( N )  invariant matrix models and particles with intermediate statistics. 
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